Existence of Global Solutions for Impulsive Functional Differential Equations with Nonlocal Conditions
نویسندگان
چکیده
In this paper, we study the existence of global solutions for a class of impulsive abstract functional differential equation with nonlocal conditions. The results are obtained by using the Leray-Schauder alternative fixed point theorem. An example is provided to illustrate the theory.
منابع مشابه
Impulsive integrodifferential Equations and Measure of noncompactness
This paper is concerned with the existence of mild solutions for impulsive integro-differential equations with nonlocal conditions. We apply the technique measure of noncompactness in the space of piecewise continuous functions and by using Darbo-Sadovskii's fixed point theorem, we prove reasults about impulsive integro-differential equations for convex-power condensing operators.
متن کاملExistence Results for Second-Order Impulsive Neutral Functional Differential Equations with Nonlocal Conditions
The study of impulsive functional differential equations is linked to their utility in simulating processes and phenomena subject to short-time perturbations during their evolution. The perturbations are performed discretely and their duration is negligible in comparison with the total duration of the processes. That is why the perturbations are considered to take place “instantaneously” in the...
متن کاملExistence Results for Nonlinear Boundary Value Problems of Impulsive Fractional Integrodifferential Equations
In this paper, we investigate the existence result for nonlinear impulsive fractional integro-differential equations with boundary conditions by using fixed point theorem and Green's function. I. INTRODUCTION The topic of fractional differential equations has received a great deal of attention from many scientists and researchers during the past decades; see [1-7]. This is mostly due to the fac...
متن کامل$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کامل